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ABSTRACT. Portfolio analysis is widely used by financial investors to find portfolios producing efficient 

results under various economic conditions. Markowitz started the portfolio optimization approach through 

mean-variance, whose objective is to minimize risk and maximize the return. This study is called Markowitz 

Mean-Variance Theory (MVP). An optimal portfolio has a good return and low risk, in addition to being well 

diversified. In this paper, we proposed a methodology for obtaining an optimal portfolio with the highest 

expected return and the lowest risk. This methodology uses Mixture Design of Experiments (MDE) as a 

strategy for building non-linear models of risk and return in portfolio optimization; computational replicas 

in MDE to capture dynamical evolution of series; Shannon entropy index to handle better portfolio 

diversification; and desirability function to optimize multiple variables, leading to the maximum expected 

return and lowest risk. To illustrate this proposal, some time series were simulated by ARMA-GARCH 

models. The result is compared to the efficient frontier generated by the traditional theory of Markowitz 

Mean-Variance (MVP). The results show that this methodology facilitates decision making, since the 

portfolio is obtained in the non-dominated region, in a unique combination. The advantage of using the 

proposed method is that the replicas improve the model precision. 
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Introduction 

In order to find efficient portfolios, many financial investors use portfolio theory. According to Awerbuch 

and Berger (2003), an efficient portfolio is a combination of investments that maximizes expected return 

while minimizing risk. 

Many authors have searched for an optimal portfolio. Among them, we have the work of Markowitz, who 

defined a model of mean-variance whose objective is to minimize the risk and maximize the return (Bradri, 

Jadid, Rachidinejad and Moghaddam, 2008). Two other studies have attempted to minimize the variance, by 

estimating the covariance matrix Jagannathan and Ma (2003) and use an estimator for the covariance matrix 

Letoit and Wolf (2004). DeMiguel, Garlappi, Nogales and Uppal (2009) present a study whose objective is to 

introduce a restriction of a vector weight of the portfolio standard and, Lai, Yu and Wang (2006) used genetic 

algorithms with multi-objective optimization in obtaining an optimal portfolio. A hybrid heuristic approach 

combining multi-objective evolutionary and problem-specific local search methods is introduced by 

Schlottman and Seese Schlottman and Seese (2004), and Najafi and Mushakhian (2015) used a hybrid of 

genetic algorithm (GA) and particle swarm optimization (PSO) combining the expected value, semivariance 

and Conditional Value-at-Risk (CVaR) to a specified confidence level. A method based on coordinate-wise 

descent algorithms to optimized portfolios, in which asset weights are constrained by 1 ≤ 𝑤 ≤ 2 was 

developed by Yen and Yen (2014). We can also find an optimal portfolio using Computer Design of 

Experiments in Oliveira, Paiva, Lima and Balestrassi (2011). The advantage in using experimental design is 

the ability to gather information about a process through systematic planned experiments, in a decision 

model approach where the analyst could check how much a variable impact on a rated model (Leme, Paiva, 

Santos, Balestrassi and Galvão, 2014). In portfolio analysis, the most suitable approach to be considered is the 

mixture design of experiments (MDE). In this kind of experimental strategy, design factors are treated as 
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proportions in a mixture system considered quite adequate for treating portfolios in general. The relationship 

of the return and risk portfolio is then estimated by an econometric model, through the response surface 

methodology.  

However, computational experiments are deterministic, sometimes turning the issues associated with the 

selection of appropriate experimental designs into something different from the physical experiments. In 

modeling computer experiments, one is usually interested in capturing and forecasting the complex behavior of 

responses under analysis, as well as in avoiding lower dimension projection problems. Problems, such as variance 

reduction, blocking and randomization are usually not considered. Furthermore, in computer experiments, the 

residual between the observed and fitted values is not a stochastic error, but a model bias. However, the central 

limit theorem, as the bias may be considered as a sum of a number of multiple higher-order small quantities. 

These issues gave rise to many alternative designs for computer experiments, such as space-filling designs. 

In this approach, one spans experimental points over a design region, enabling to capture complex response 

behavior and/or mimicking statistical properties of the system under analysis. Researchers have adopted 

different approaches for space-filling designs (Pronzato and Muller, 2012). However, for experiments with 

mixtures, MDE is the optimal strategy to space-fill the feasible region (Cornell, 2002). 

The objective of this study was to find an optimal portfolio through a Mixture Design of Experiments (MDE) 

using computational replicas. To emulate random errors, in each replica the forecasting of the series is used. 

The advantage of using the proposed method is that replicas improve the model precision and this is 

important when we are working with forecasting and gives reliability for decision-making.  

This article is organized as follows: Section 2 presents fundamental concepts of portfolio optimization, 

mainly on the theory of Markowitz Mean-Variance (MVP). Section 3 presents the concepts of optimization 

based on Mixture Design of Experiments. The Shannon entropy index, the concepts of replicas, and 

desirability functions are also covered. In section 3 also presents an application of the proposed methodology, 

where time series are simulated and an optimal portfolio is obtained. Finally, the last section presents some 

concluding remarks. 

Material and methods 

Using mixture design of experiments for portfolio optimization 

In this section, we present basic concepts of portfolio optimization, Shannon entropy index, replicates in 

Mixture Design of Experiments (MDE), and the desirability function. These concepts are presented in 

Monticeli, Balestrassi, Souza, Leme and Paiva (2017). 

Mixture design of experiments for portfolio 

Based on return and risk analysis, portfolio theory provides information to assist investors in making 

decisions. According to Monticeli et al. (2017), to make this process more efficient, some researchers have 

developed portfolio optimization models. The investor’s goal is to maximize return and minimize risk. The 

investor must consider the factors: the expected return, the risk and the amount invested in each asset 

(Oliveira et al., 2011). 

In 1952, Harry Markowitz (1952) presented a study called Mean-Variance (MVP). MVP consists of creating 

a portfolio with minimum variance and maximum expected return. The expected return is defined in (1), i.e., 

is the sum of the weighted average of each asset in the proportions of investment. 

𝜇𝑐 =  ∑ 𝑤𝑖𝜇𝑖
𝑛
𝑖 . (1) 

The variance defined by Markowitz is presented in (2), written as the expected value of the linear 

combination involving a covariance term 𝜎𝑖𝑗. 

𝜎2 = ∑ 𝑤𝑖
2𝜎𝑖

2𝑛
𝑖=1 + ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗𝑗≠𝑖 . (2) 

The MVP can be characterized as an MDE if considering the weights and values of the MVP model as 

proportions of a mixture, whose sum is a unity, or restricted to a certain limit. 

Cornell defines the MDE as a special class of response surface experiments, in which the product under 

investigation consists of multiple components. The response to be obtained is a function of the proportions 

of ingredients that comprise the mixture. These proportions are non-negative and the sum must be equal to 
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one (Cornell, 2002). The components of the mixture experiment form a space called simplex coordinate 

system; the uniform distribution is known as a lattice. 

The lattice can have a match with a polynomial equation. A polynomial model of degree 𝑚 to a mixture of 

𝑞 components consists of a coordinated set of points that define the proportions of each component, 

according to Equation (3). This model is called {𝑞, 𝑚}simplex-lattice (Cornell, 2002). 

𝑤𝑖 = 0,
1

𝑚
,

2

𝑚
, … , 1 (3) 

Figure 1 illustrates a {3,2} simplex-lattice. In this case, the mixture has three components and the 

polynomial is of degree two. In Equation (4), we have the points that form the lattice. The first three 

components are the nodes and represent the pure mixture, the last three terms represent mixtures of two 

components (Oliveira et al., 2011).  

(𝑤1, 𝑤2, 𝑤3) = (1,0,0), (0,1,0), (0,0,1), (
1

2
,

1

2
, 0) , (

1

2
, 0,

1

2
) , (0,

1

2
,

1

2
). (4) 

 

Figure 1: Simplex coordinate system with three components. 

In Figure 1, we can also observe a central point, called centroid. This point is the mixture with equal 

proportions of each component (Oliveira et al., 2011).  

The polynomial model of degree 𝑚 that represents the relationship between the response variables and the 

proportions, is generally linear, quadratic or cubic. Equation (5) shows an example of a cubic polynomial model. 

𝐸(𝑤) =  ∑ 𝛽𝑖
∗𝑤𝑖 + ∑ ∑ 𝛽𝑖𝑗

∗ 𝑤𝑖𝑤𝑗
𝑞
𝑖<j

𝑞
𝑖=1 + ∑ ∑ ∑ 𝛽𝑖𝑗𝑘

∗ 𝑤𝑖𝑤𝑗𝑤𝑘
𝑞

𝑖<𝑗<𝑘  (5) 

The coefficients 𝛽𝑖
∗ show how each component contributes to the response variable. In the same way, the 

term 𝛽𝑖𝑗
∗  indicates the combined effect of the components 𝑖 and 𝑗. Indeed, for the linear model 𝛽𝑖𝑗

∗ =  𝛽0 + 𝛽𝑖  

and for the quadratic model, 𝛽𝑖
∗ = 𝛽0 + 𝛽𝑖 + 𝛽𝑖𝑖  and 𝛽𝑖𝑗

∗ =  𝛽𝑖𝑗 − 𝛽𝑖𝑖 − 𝛽𝑖𝑗. These coefficients are estimated 

using the Ordinary Least Squares algorithm (OLS) [13].  

MDE can generate concentrated portfolios. To avoid it, we can use a maximization of the Shannon entropy 

index, as presented in Monticeli et al. (2017). 

Shannon entropy 

Portfolio diversification consists of distributing the weights among the assets and not attribute most of 

the weight to just a few assets, which would increase the risk. According to [16], a way to control diversity is 

by restricting weights, imposing an upper or lower limit. In this section, these restrictions are defined as 

proposed by Usta and Kantar (2011). 

Finding an optimal portfolio is to maximize the objective function, 𝑓(𝑤𝑖), subject to the constrained 

presented in (6) and (7). 

0 ≤ 𝑤𝑖 ≤ 1,      𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑛 (6) 

∑ 𝑤𝑖 = 1𝑛
𝑖=1  (7) 



Page 4 of 12  Monticeli et al. 

Acta Scientiarum. Technology, v. 45, e63500, 2023 

Adding to the constraints (6) and (7) an entropy constraint, whose objective is to add a lower limit to the weights 

in portfolio, Shannon (1948) defines entropy as a discrete set of probabilities 𝑝1, 𝑝2, … , 𝑝𝑛 as in Equation (8). 

𝐸𝑛𝑡 =  − ∑ 𝑝𝑖(𝑥) log 𝑝𝑖(𝑥)𝑛
𝑖=1  (8) 

For a continuous distribution with a density distribution 𝑝(𝑥), Shannon (1952), defines entropy according to 

Equation (9). 

𝐸𝑛𝑡 =  − ∫ 𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥
∞

−∞
 (9) 

Note that restriction (6), which ensures non-negative weights, meets the necessary condition allowing the 

calculation of entropy. 

The entropy index in a portfolio has a discrete probability distribution. Therefore, as defined in Huang (2012), 

the entropy constraint adds a lower limit 𝐿𝐸on the entropy 𝐸𝑛𝑡 of a portfolio 𝑤𝑖, according to Equation (10). 

𝐸𝑛𝑡 =  − ∑ 𝑝𝑖(𝑥) log 𝑝𝑖(𝑥)𝑛
𝑖=1 = − ∑ 𝑤𝑖 log 𝑤𝑖

𝑛
𝑖=1 ≥ 𝐿𝐸 (10) 

When the entropy index reaches the minimum value, there is a less diversified scenario with only one 

component of 𝑤 is 1, because, −1 × log 1 = 0. In the most diverse scenario, 𝑤𝑖 =
1

𝑛
 for all 𝑖, 𝐸𝑛𝑡 reaches its 

maximum −𝑛 (
1

𝑛
log

1

𝑛
) = log 𝑛. Thus, the range of 𝐿𝐸 is [0, log 𝑛]. Since a larger 𝐸𝑛𝑡 indicates better diversity, the 

entropy constraint uses a lower limit 𝐿𝐸 within the interval [0, log 𝑛] to control the diversity of 𝑤𝑖 from being too 

low (Lin, 2013). 

Replicas in MDE and Desirability function 

In MDE, replicas are identical experiments but with different characteristics. It is possible to replicate all 

the points of a project, which may provide a better estimate of the error or noise, favoring more accurate 

estimates of the effects. 

In this study, an optimal portfolio will be obtained using the entropy index to diversify it and replica to 

better estimate the errors. To solve the optimization of multiple responses, we used the desirability function. 

The desirability function transforms each estimated response variable �̂�𝑖 into a desirable individual value 

𝑑𝑖, where 0 ≤ 𝑑𝑖 ≤ 1. When it is desired to minimize the response variable y, the function of transforming 

variables is given by Equation (11). When it is desired to maximize the response variable y, Equation (12) is 

used for the variable transformation function. 

𝑑[𝑦] =  {

0

[
(𝐻𝑖− �̂�𝑖

(𝐻𝑖−𝑇𝑖)
]

𝜆

1

    

𝑖𝑓

𝑖𝑓

𝑖𝑓

     

�̂�𝑖 >  𝐻𝑖

𝑇𝑖 ≤  �̂�𝑖  ≤  𝐻𝑖

�̂�𝑖 <  𝑇𝑖

  (11) 

𝑑[𝑦] =  {

0

[
(�̂�𝑖− 𝐿𝑖

(𝑇𝑖−𝐿𝑖)
]

𝜆

1

    

𝑖𝑓

𝑖𝑓

𝑖𝑓

     

�̂�𝑖 <  𝐿𝑖

𝐿𝑖 ≤  �̂�𝑖  ≤  𝑇𝑖

�̂�𝑖 >  𝑇𝑖

 (12) 

where, 𝐿𝑖 is the lower limit of desirability; 𝐻𝑖 is the upper limit; 𝑇𝑖 is the target of the desirability, and 𝜆 is the 

parameter of desirability; when 𝜆~1, equal emphasis is given to the target and limits; when 𝜆~10, �̂�𝑖 assumes a 

value closer to the target (Oliveira et al., 2011). In Figure 2, one can observe how the weights affect the result. 

 

Figure 2. Desirability functions for different goals - how weights affect their shapes. 
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The total desirability value 𝐷, which will be in the interval [0, 1], is formed by the simple geometric mean 

as in Equation (13) or by the weight geometric mean given by Equation (14), in this case, the weights (𝑧𝑖) 

indicate the importance of each property in relation to others in the optimization.  

𝐷 =  (𝑑1 × 𝑑2  × … ×  𝑑𝑘)
1

𝑘 (13) 

𝐷 =  (𝑑1
𝑧1 × 𝑑2

𝑧2  × … × 𝑑𝑘
𝑧𝑘)

1

∑ 𝑧𝑖
𝑘
𝑖  (14) 

where 𝑘 is the number of variables.  

Considering an MVP, we can reformulate the portfolio optimization problem using the desirability 

function in MDE, as in Oliveira et al. (2011), where the mean, 𝜇𝑐 , is the return, the variance, 𝜎2, the risk 

measure, and seeking to portfolio diversification, the entropy, 𝐸𝑛𝑡, according to Equation (15). 

𝑀𝑎𝑥                𝐷 =  √𝑑𝜇𝑐
×  𝑑𝜎2 ×  𝑑𝐸𝑛𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝑑𝑛+1(𝑦𝑖) ≥ 𝐷,       𝑖 = 1, 2, … , 𝑘 (15) 

                          𝐷 ≥ 0 

                          𝑤 ∈  Ω    

𝑑𝑛+1(𝑦𝑖) is the desirability function 𝑦𝑖  in (𝑛 + 1)𝑡ℎiteration; 𝑤 ∈ Ω denotes the entire region defined early 

in the process.  

Results and discussion 

Portfolio Optimization by MDE and computational replicas: a case study on ARMA-GARCH times series 

In this section, we apply the proposed methodology for portfolio optimization. The portfolio consisted of 

time series generated from the model chosen a priori. 

The returns and risks are defined as 2.1, that is, the average return of portfolio 𝑝, (denoted by 𝑎𝑣𝑟𝑒𝑡𝑝), is 

defined by Equation (16) 

𝑎𝑣𝑟𝑒𝑡𝑝 = ∑ 𝑤𝑖 . 𝜇𝑖𝑖  (16) 

In which, 𝑤𝑖  is the weight of series 𝑖 in portfolio 𝑝. The risk of the portfolio is defined by Equation (17), 

with 𝜎𝑖
2 the variance of the series 𝑖 e 𝜎𝑖𝑗  is correlation between series 𝑖 and 𝑗  

𝜎𝑝 = √∑ 𝑤𝑖
2𝜎𝑖

2𝑛
𝑖=1 + ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗𝑗≠𝑖  (17) 

The portfolio of lower cost and lower risk for 𝑤𝑖, can be determined by minimizing Equation (16) and 

Equation (17) with restrictions ∑ 𝑤𝑖𝑖 = 1 and 𝑤𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. 

The time series that make up the portfolio were generated following ARMA-GARCH models. 

ARMA-GARCH model 

We used for time series the so called ARMA(𝑝, 𝑞)-GARCH(𝑘, 𝑙) models. The ARMA model was employed to 

fit the mean, and GARCH model for variance (Montgomery, Jennings and Kulahci, 2011). 

Consider the time series 𝑦𝑡, the autoregressive and moving average model, ARMA(𝑝, 𝑞) can be modeled by 

Equation (18). 

𝑦𝑡 = 𝛿 + ∑ 𝜙𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑗𝜀𝑡−𝑗 + 𝜀𝑡

𝑞
𝑗=1  (18) 

where 𝛿 is a constant term, 𝜙𝑖  is the 𝑖th autoregressive coefficient,  𝜃𝑗 is the 𝑗th moving average coefficient, 

and 𝜀𝑡 is the error term at time 𝑡. 𝜀𝑡 can be modeled as Equation (19), 

𝜀𝑡 =  √𝑣𝑡𝑧𝑡 (19) 

where 𝑧𝑡 is a white noise sequence with mean 0 and variance 1. Assuming that 𝑣𝑡 is conditioned on the 𝑙 

previous erros and can be estimated by Equation (20) 
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𝑣𝑡 =  𝜁0 + 𝜂1𝜀𝑡−1
2 + 𝜂2𝜀𝑡−2

2 + ⋯ + 𝜂𝑙𝜀𝑡−𝑙
2  (20) 

where 𝜁0 and 𝜂𝑖  are constant coefficients. In this case, 𝜀𝑡 is said to follow an autoregressive conditional 

heteroskedastic process of order 𝑙, denoted by ARCH(𝑙) (Liu, Erdem & Shi, 2011). 

When the current conditional variance depends on the previous conditional variance, the GARCH(𝑘, 𝑙) 

(Generalized Autoregressive Conditional Heteroscedasticity) process given by 

𝑣𝑡 =  𝜁0 + ∑ 𝜁𝑖𝑣𝑡−𝑖
𝑘
𝑖=1 + ∑ 𝜂𝑖𝜀𝑡−𝑖

2𝑙
𝑖=1  (21) 

To check the best model to forecast, we used the Akaike’s Information Criterion (AIC). 

Akaike’s Information Criterion - AIC 

Akaike’s Information Criterion (AIC) suggested by Akaike (1973) uses a function based on the likelihood 

to select the best fitted model. AIC can address the over-fitting problem by introducing the penalty term based 

on the number of free parameters. The mathematical model for the AIC is presented in  

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) (22) 

where 𝐿 and 𝑘 are the values of the likelihood function and the number of free parameters, respectively. The 

models with lower AIC values are usually preferred (Liu et al., 2011). 

The times series 

We present the generated series that make up the portfolio and the models used to better model the series 

for the forecasts. The four time series and the model used for the forecasts are shown in Figures 3, 4, 5 and 6. 

 

Figure 3. Serie 1, equation 𝑦𝑡 = 10 + 0.3𝑦𝑡−1 + 𝜀𝑡 − 0.7𝜀𝑡−1. The model used: ARMA(1,1) with AIC: 287.19. 

 

Figure 4. Serie 2, equation yt = 0.6 + 0.38yt−1 + 0.17yt−2 + εt + 0.08εt−1. The model used: ARMA(1,0)-GARCH(1,1) with AIC: 270.906. 

 

Figure 5. Serie 3 equation 𝑦𝑡 = 18 − 0.8𝑦𝑡−1 + 𝜀𝑡 + 0.8𝜀𝑡−1. The model used: ARMA(1,1)-GARCH(0,1) with AIC: 338.46. 

 

Figure 6: Serie 4, equation 𝑦𝑡 = 0.6 + 0.26𝑦𝑡−1 + 0.37𝑦𝑡−2 + 𝜀𝑡 + 0.8𝜀𝑡−1. The model used: ARMA(1,1)-GARCH(1,1) with AIC: 275.778. 

After selecting the model, we made the forecast of 5 steps in each series. The return and risk are 

presented in Table 1 and 2, respectively. 
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Table 1. Forecast return for each series. 

 Series 1 Series 2 Series 3 Series 4 

Step 14.97254 2.4129 10.2307 3.9383 

1 14.78319 2.0938 10.0975 3.2420 

2 14.64562 1.8995 10.2125 2.8119 

3 14.54567 1.7813 10.1132 2.5463 

4 14.47306 1.7093 10.1989 2.3823 

5 14.97254 2.4129 10.2307 3.9383 

Table 2. Forecast risk for each series. 

 Series 1 Series 2 Series 3 Series 4 

Step 0.969704 0.9959 0.8444 1.0523 

1 0.980197 0.9969 1.1942 1.0541 

2 0.985691 0.9979 1.4626 1.0559 

3 0.988578 0.9989 1.6889 1.0577 

4 0.990099 0.9999 1.8882 1.0595 

5 0.969704 0.9959 0.8444 1.0523 

 

For each replica, we use the forecast return and risk, as the values in Table 1 and Table 2. In this way, we 

have five replicas. For each replica, we calculate the correlation between the time series. 

Applying the proposed methodology 

After known the series that composed the portfolio, the forecasts and the correlations, we find the 

optimum portfolio using the proposed methodology, i.e., using MDE with replicas. Using the desirability 

function implemented in the Minitab software and, to improve the diversity of the portfolio, we used the 

Shannon entropy index. 

Five replicates, one for each forecast were used. It was used the entropy to diversify the portfolio, Equation 

(10). The weights, 𝑤𝑖, of each series must not be zero. Thus, we need to delimit the proportions between 0.01% 

for the lower level and 99.97% to the upper level. We added points in the design, which are called axial points, 

in order to provide information about the interior of the response surface, which tends to improve the final 

result (Cornell, 2002). In Figure 7, we can see the MDE as well as the added axial point. 

 

Figure 7. Mixtures arrangements of 4 time series. 
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Table 3 lists the constructed MDE. The return and risk were calculated using Equation (16) and Equation (17) 

respectively, and the entropy, using Equation (10). All taking into account the weights, 𝑤𝑖, obtained by the MDE. 

Table 3. MDE with 4 components and 5 replicas in Minitab. 

 Series 1 Series 2 Series 3 Series 4 Return Risk Entropy 

R
e

p
li

ca
 1

 

0.00010 0.00010 0.00010 0.99970 3.9399 1.02565 0.00306 

0.99970 0.00010 0.00010 0.00010 14.9697 0.98455 0.00306 

0.00010 0.99970 0.00010 0.00010 2.4151 0.99784 0.00306 

0.00010 0.00010 0.99970 0.00010 10.2298 0.91876 0.00306 

0.00010 0.00010 0.49990 0.49990 7.0848 0.79124 0.69505 

0.00010 0.49990 0.00010 0.49990 3.1775 0.98623 0.69505 

0.00010 0.49990 0.49990 0.00010 6.3224 0.83405 0.69505 

0.49990 0.00010 0.00010 0.49990 9.4548 0.78698 0.69505 

0.49990 0.00010 0.49990 0.00010 12.5997 0.79035 0.69505 

0.49990 0.49990 0.00010 0.00010 8.6924 0.86688 0.69505 

0.25000 0.25000 0.25000 0.25000 7.8886 0.76800 1.38629 

0.12505 0.12505 0.12505 0.62485 5.9142 0.85067 1.07378 

0.62485 0.12505 0.12505 0.12505 11.4292 0.80457 1.07378 

0.12505 0.62485 0.12505 0.12505 5.1519 0.87178 1.07378 

0.12505 0.12505 0.62485 0.12505 9.0592 0.77702 1.07378 

..
. 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

R
e

p
li

ca
 5

 

0.00010 0.00010 0.00010 0.99970 2.3842 1.02915 0.00306 

0.99970 0.00010 0.00010 0.00010 14.4701 0.99485 0.00306 

0.00010 0.99970 0.00010 0.00010 1.7115 0.99984 0.00306 

0.00010 0.00010 0.99970 0.00010 10.1977 1.37379 0.00306 

0.00010 0.00010 0.49990 0.49990 6.2910 0.94237 0.69505 

0.00010 0.49990 0.00010 0.49990 2.0479 0.98764 0.69505 

0.00010 0.49990 0.49990 0.00010 5.9546 0.97828 0.69505 

0.49990 0.00010 0.00010 0.49990 8.4272 0.79273 0.69505 

0.49990 0.00010 0.49990 0.00010 12.3339 0.94346 0.69505 

0.49990 0.49990 0.00010 0.00010 8.0908 0.87090 0.69505 

0.25000 0.25000 0.25000 0.25000 7.1909 0.81080 1.38629 

0.12505 0.12505 0.12505 0.62485 4.7876 0.86234 1.07378 

0.62485 0.12505 0.12505 0.12505 10.8305 0.82009 1.07378 

0.12505 0.62485 0.12505 0.12505 4.4512 0.88234 1.07378 

0.12505 0.12505 0.62485 0.12505 8.6943 1.00573 1.07378 

 

Using Equation (5), response surfaces were built for each portfolio property using the OLS algorithm, 

leading to the following objective functions:  

𝐸(μ) = 14.6840𝑤1 + 1.9794𝑤2 + 10.1706𝑤3 + 2.9842𝑤4 

𝐸(𝜎²) = 0.9913𝑤1 + 0.9996𝑤2 + 1.1816𝑤3 + 1.0286𝑤4 − 0.5171𝑤1𝑤2 − 0.8466𝑤1𝑤3 − 0.8892𝑤1𝑤4 −

0.7072𝑤2𝑤3 − 0.1169𝑤2𝑤4 − 0.9193𝑤3𝑤4 (23) 

𝐸(𝐸𝑛𝑡) = −0.03097𝑤1 − 0.03097𝑤2 − 0.03097𝑤3 − 0.03097𝑤4 + 3.41042𝑤1𝑤2 + 3.41042𝑤1𝑤3

+ 3.41042𝑤1𝑤4 + 3.41042𝑤2𝑤3 + 3.41042𝑤2𝑤4 + 3.41042𝑤3𝑤4 

To determine the optimal portfolio by the desirability function, it is necessary to define the parameters of 

Target (𝑇𝑖), Upper Limit (𝐻𝑖), and Lower Limit (𝐿𝑖). These parameters can be defined using the average, 

maximum value and minimum value for return, risk and entropy. 

Since the purpose of the risk is to minimize, the value used were: for the Target (𝑇𝑖), the minimum value 

and the Upper Limit (𝐻𝑖), the average. For return and entropy, as the objective is to maximize, values used 

were: for the Target (𝑇𝑖), the maximum value and for the Lower Limit (𝐿𝑖), the average. Table 4 lists the values 

used. 

Table 4. Parameters used to maximize the desirability function. 

 Return Risk Entropy 

𝑇𝑖 14.9697 0.7680 1.3863 
𝐿𝑖 7.4545  0.6576 
𝐻𝑖 

 0.9170  
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From these parameters, and the desirability function used in Minitab, we obtained the following 

combination for the portfolio, listed in Table 5. 

Table 5. Obtained by combining desirability function. 

Series 1 Series 2 Series 3 Series 4 

48.48% 5.08% 32.30% 14.15% 

 

The value of return of the optimal portfolio found (Table 5) is 10.9258, and the risk is 0.7978, as noted in 

Figure 8. Figure 9 illustrates the mixture contour plot for returns of portfolio. 

 

Figure 8. Optimal portfolio obtained by the desirability function. 

 

 

Figure 9. Contour plot for the Portfolio’s return. 



Page 10 of 12  Monticeli et al. 

Acta Scientiarum. Technology, v. 45, e63500, 2023 

Analyzing the sensitivity of each set, we have: in series 1, we get the values that are in the following ranges: 

from 0. 88% to 75.57%. In series 2, values within the range 0.01% to 41.90%. For series 3, we have the values 

between 0.01% and 75.17%, and for series 4, 0.01% and 51.66%. Table 6 lists some results obtained by varying 

the value of series 2.  

Table 6. Variation of weights applied in series 2. 

Series 1 Series 2 Series 3 Series 4 Desirability Return Risk Entropy 

51.06% 0.01% 34.02% 14.90% 0.9530 11.4037 0.8002 1.0033 

49.54% 3.00% 33.01% 14.46% 0.9541 11.1218 0.7986 1.0422 

48.48% 5.08% 32.30% 14.15% 0.9544 10.9258 0.7978 1.0667 

45.96% 10.00% 30.62% 13.41% 0.9535 10.4620 0.7967 1.1164 

40.85% 20.00% 27.22% 11.92% 0.9457 9.5194 0.7984 1.1814 

35.75% 30.00% 23.82% 10.43% 0.9273 8.5769 0.8053 1.1983 

30.64% 40.00% 20.42% 8.94% 0.8701 7.6343 0.8174 1.1674 

 

We can also point out a strong negative correlation between the risk and the Entropy (−0.709), i. e., the 

higher the entropy, the lower the risk. Therefore, by maximizing the entropy, the risk is minimized. 

To validate the proposed methodology, we solved the problem using the theory of Markowitz Mean-

Variance and traced the efficient frontier (Figure 10). Then, we marked in the same coordinate plane the 

optimal portfolio obtained by the proposed methodology (𝑃𝑜𝑖𝑛𝑡 𝐴). 

 

Figure 10: Efficient frontier determined by MVP.  

Comparing the results obtained with no use of replicas, we get an increase of 5.34% in return and a 

reduction of 0.81% in risk. Also, we have reduced the standard deviation of returns and risk at 15.66% and 

27.26%, respectively. 

𝑃𝑜𝑖𝑛𝑡 𝐴 in Figure 10 is in the frontier, located in the combination of more return and lower risk, which 

allows to conclude that the result was satisfactory. It is worth noting that, as the proposed methodology 

determines an optimal combination for the portfolio, it is easier to make a decision, which does not occur 

with MVP, as it generates a set of optimal combinations. 

The advantage of the proposed methodology compared to that presented by Monticeli et al. (2017) is 

related to the number of replicates. The number of replicas used in this methodology is defined by the number 

of forecasts made, while in the methodology presented in Monticeli et al. (2017), the number of replicas is 

related to the autocorrelation function and the number of moving windows, which can result in a very large 

number of replicas.  
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Conclusion 

This study presented a methodology using Mixture Design of Experiments to determine the combination 

for an efficient portfolio. In the methodology used, to come up with a diversified portfolio, we can use the 

Shannon entropy index, and for multi-objective optimization, the desirability function. We use replicas in 

Mixture Design of Experiments in the forecasts to provide more security to decision making. The work also 

compared its results with the traditional theory of Markowitz Mean-Variance. 

In the proposed method, the result is an optimal combination of lower cost and lower risk, which facilitates 

the decision-making process on portfolio selection.  
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